Code: ME7T4

IV B.Tech - I Semester - Regular Examinations - November 2015

FINITE ELEMENT METHODS (MECHANICAL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Answer any FIVE questions. All questions carry equal marks

1. a) If a displacement field is described by

$$u=1+3x+4x^3+6xy^2$$

 $v=xy-7x^2$

determine \mathcal{E}_x , \mathcal{E}_y and γ_{xy} at point (1, 2).

6 M

b) Determine the displacement of nodes of the spring system as shown in Figure-1.

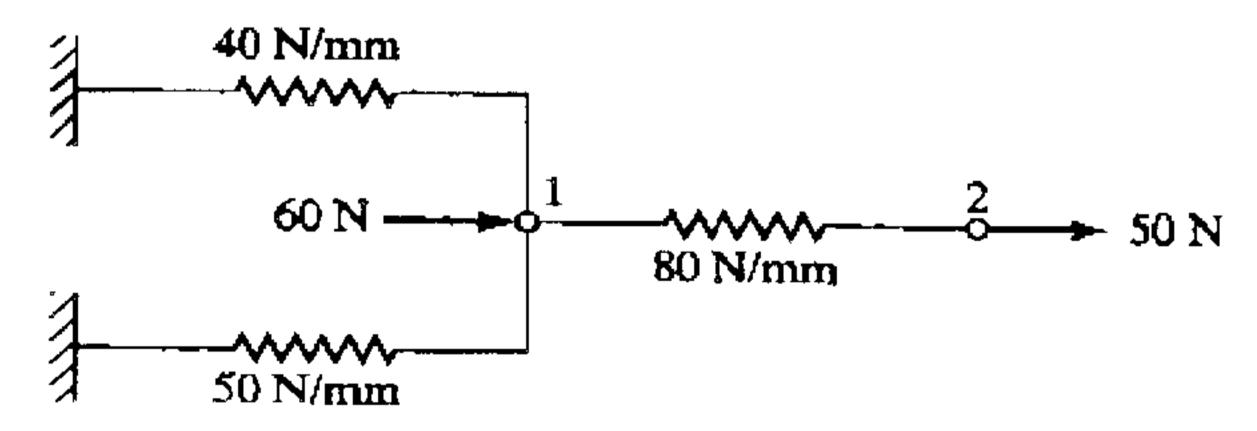


Figure-1

2. Determine the nodal displacements, element stresses, and support reactions by adopting the elimination method for handling boundary conditions. For the Figure-2 as shown below.

- Formulate one dimensional heat transfer problem using Galerkin approach.
- 4. Determine the vector \mathbf{q}' , stress in the element and stiffness matrix, if $\mathbf{q}=[1.5, 1.0, 2.1, 4.3]$.

- 5. A concentrated load P=50kN is applied at the center of a fixed beam of length 3m, depth=200mm and width 120 mm. Calculate the deflection and slope at the mid point.

 Assume E=2X10⁵ N/mm².
- 6. The nodal coordinates of the triangular element as shown in Figure-4. At the interior point 'P' the x cordinate is 3.3 and $N_1=0.3$. Determine the value of N_2 , N_3 and y value. 14 M

- 7. a) Derive the shape functions for 4 -noded quadrilateral element.
 - b) Explain Numerical integration. 7 M
- 8. Develop stiffness matrix and mass matrix of a bar subjected to axial vibrations as shown in Figure-5. Determine natural frequencies. Take density=7500 kg/m³, E=200 GPa.

14 M

7 M

